Biyani Girls college ,Jaipur

Model Paper-A (B.Sc. II)
Subject: Mathematics

Paper : Numerical Analysis
Max Marks: 32
Max Time: 2:30 hrs
Attempt any five questions in all selecting atleast one question from each unit.

Unit 1

Q. 1 Prove that
$\begin{array}{ll}\text { (i) } \mu \delta=\frac{1}{2}(\Delta+\nabla) & \text { (ii) } 1+\left(\frac{\delta^{2}}{2}\right)=\sqrt{1+\delta^{2} \mu^{2}}\end{array}$
Given, $\log 100=2, \log 101=2.0043, \log 103=2.0128, \log 104=$ 2.0170. Find log 102.

> Or
(i) Derive the Newton Forward Interpolation Formula.
(ii)

$$
\begin{aligned}
& \text { By means of Lagrange's formula, prove that } \\
& y_{1}=y_{3}-0.3\left(y_{5}-y_{-3}\right)+0.2\left(y_{-3}-y_{-5}\right) .
\end{aligned}
$$

Unit 2

Q. 2 (i)

The values of e^{-x} at $x=1.72$ to $x=1.76$ are given in the following table:

$x:$	1.72	1.73	1.74	1.75	1.76
$e^{-x}:$	0.17907	0.17728	0.17552	0.17377	0.17204

Find the value of $e^{-1.7425}$ using Gauss' forward difference formula. (ii)

Find the value of y_{15}, using Bessel's formula, if

$$
y_{10}=2854, \quad y_{14}=3162, \quad y_{18}=3544, \quad y_{22}=3992
$$

or
(i) Find the First Derivative and second Derivative of Newton Backward Interpolation.

Evaluate

$$
\int_{0}^{6} \frac{d x}{1+x^{2}} \text { by using }
$$

(i) Simpson's one-third rule
(ii) Simpson's three-eighth rule
(iii) Trapezoidal rule

Unit 3

Q. 3 (i)

Approximate y and z by using Picard's method for the particular
solution of $\frac{d y}{d x}=x+z, \frac{d z}{d x}=x-y^{2}$ given that $y=2, z=1$ when $x=0$.
(i) By Runge Kutta method

$$
\text { Given } \frac{a y}{d x}=y-x, y(0)=2 . \text { Find } y(0.1) \text { and } y(0.2) \text { correct to } f
$$

decimal places

Or

$$
\text { Given that } \frac{d y}{d x}=\log _{10}(x+y) \text { with the initial condition that } y=1
$$

when $x=0$. Find y for $x=0.2$ and $x=0.5$ using Euler's modified formula .

Unit 4

Q.4. A necessary and sufficient condition that a vector $\overrightarrow{F(t)}$ to be constant direction only is $\vec{F} \times \frac{\overrightarrow{d F}}{d t}$
(b) Find the directional derivative of $\phi=4 x z^{3}-3 x^{2} y^{2} z$ at the point $(2,-1,2)$ in the direction $2 \mathrm{i}-\mathrm{sj}+6 \mathrm{k}$.
or
Verify Stokes Theorem for the function $F=z i+x j+y k$ where C is the unit circle in the $x-y$ plane bounding the hemisphere $\mathrm{z}=\sqrt{1-x^{2}-y^{2}}$

Verify divergence theorem for $\mathrm{F}=\mathrm{xyi}+z^{2} j+2 y z k$ on the tetrahedron $\mathrm{x}=\mathrm{y}=\mathrm{z}=0, \mathrm{x}+\mathrm{y}+\mathrm{z}=1$

Biyani Girls college ,Jaipur

Model Paper-B (B.Sc. II)
Subject: Mathematics
Paper : Numerical Analysis
Max Marks: 32
Max Time: 2:30 hrs

Unit 1

Q. 1

Express $y=2 x^{3}-3 x^{2}+3 x-10$ in factorial notation and hence show that $\Delta^{\overline{3}} y=12$.
b)

Estimate the production for 1964 and 1966 from the following data:

> or

Prove that the Lagrange's formula can be put in the form

$$
\mathrm{P}_{n}(x)=\sum_{r=0}^{n} \frac{\phi(x) f\left(x_{r}\right)}{\left(x-x_{r}\right) \phi^{\prime}\left(x_{r}\right)}
$$

where

$$
\phi(x)=\prod_{r=0}^{n}\left(x-x_{r}\right)
$$

Unit 2

Q. 2 (i)

From the following table, find the value of $e^{0.24}$
Where $\mathrm{x}=0.1,0.2,0.3,0.4,0.5$
(ii)

Using Bessel's formula, find f'(7.5) from the following table:

$x:$	7.47	7.48	7.49	7.5	7.51	7.52	7.53
$f(x):$	0.193	0.195	0.198	0.201	0.203	0.206	0.208.

(a) Use Gauss's forward interpolation formula to find $f(32)$ from the given table

$\mathrm{X}:$	25	30	35	40
$\mathrm{~F}(\mathrm{x}):$	0.2707	0.3027	0.3386	0.3794

(b)

If third differences are constant, prove that $y_{x+\frac{1}{2}}=\frac{1}{2}\left(y_{x}+y_{x+1}\right)-\frac{1}{16}\left(\Delta^{2} y_{x-1}+\Delta^{2} y_{x}\right)$.

Unit 3

Q. 3 Solve the following system of equations :

$$
\begin{aligned}
& 10 x_{1}+2 x_{2}+x_{3}=9 \\
& 2 x_{1}+20 x_{2}-2 x_{3}=-44 \\
& -2 x_{1}+3 x_{2}+10 x_{3}=22
\end{aligned}
$$

Use Gauss Jordan Method.

(b) Solve the following system of equation by Jacobi Method.
$83 x_{1}+11 x_{2}-4 x_{3}=95$
$7 \mathrm{x}_{1}+52 \mathrm{x}_{2}+13 \mathrm{x}_{3}=104$
$3 x_{1}+8 x_{2}+29 x_{3}=71$

Or
(a) Given the differential eqn. $\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}$
with the initial condition $y=0$ when $x=0$. Use Picard's method to obtain y for $x=0.25,0.5$ and 1.0 correct to three decimal places.
(b) Using Euler's modified method, obtain a solution of the equation $\frac{d y}{d x}=x+|\sqrt{y}|$ with initial conditions $y=1$ at $x=0$ for the range $0 \leq x \leq 0.6$ in the step of 0.2 . Correct upto four place of decimals.

Unit 4

Q.4(a) If $\vec{r} \times \overrightarrow{d r}=0$ then show that r is a constant vector.

Prove that $\operatorname{curl}(\mathrm{u} \vec{a})=(\operatorname{grad} \mathrm{u}) \mathrm{x} \vec{a}+\mathrm{u}$ curl \vec{a} If $\frac{d^{2} r}{d t^{2}}=-n^{2} r$, then find the value of $\left|\frac{\overrightarrow{d r}}{d t}\right|$

Or
Verify Gauss divergence theorem for the function $\mathrm{F}=4 \mathrm{xzi}-y^{2} \mathrm{j}+\mathrm{yzk}$ taken over the cube bounded by $x=0, x=1 y=0, y=1 z=0 z=1$.

Use Green's theorem to evaluate :

$$
\int\{(y-\sin x) d x+\cos x d y\}
$$

Where c is a triangle enclosed by the lines $\mathrm{y}=0, \mathrm{x}=\pi / 2$ and $\mathrm{y}=2 x / \pi$

